Use of cocoa ethanolic extract for treatment of Staphylococcal infection in rabbit-skin model

Main Article Content

Ariza Budi Tunjung-Sari
Teguh Wahyudi
Diana Chusna Mufida
Mekania Tamarizki
Desyana Perwitahati
Ihda Kartika Syamsuddin
Misnawi Jati

Abstract

In  septic  condition,  the  skin  normal  flora  Staphylococcal  spp.  may  trigger local  and  sistemic  skin  infection.  In  this  study  antibacterial  activity  of  cocoa ethanolic  extract  (CEE)  against  Staphylococcus  aureus  and  Staphylococcus epidermidis infections  was  observed  in  vitro  and  in  vivo.  Ethanolic  extract  from unfermented  cocoa  beans  was  prepared  as  solution  in  the  in  vitro  testing,  while for  in  vivo  testing  the  extract  was  prepared  as  cream.  Agar  well  diffusion  assay showed  that  CEE  ranging  from  7.8  mg/mL  to  1000  mg/mL  demonstrated  inhibitory  activity  against  growth  of  either  S.  aureus  and  S.  epidermidis. Inhibitory activity  of  CEE  was  in  concentration  dependent  manner,  and  was  less  potential than either cephalexin 4 x 10 -3 mg/mL or cefotaxime 8 x 10 -3 mg/mL. Linear regression of CEE concentration plotted against inhibition zone values ha dpredicted the minimum inhibitory  concentrations  (MIC)  of  CEE  towards  S.  aureus  and  S.  epidermidis were at 341.9 mg/mL and 359.7 mg/mL, respectively. Topical application of cream containing  CEE  at  several  concentrations  (2%,  4%,  and  8%)  demonstrated  healing properties  towards  incision  wound  infected  with  S.  aureus and  S.  epidermidis cultures in rabbit-skin model. CEE cream promoted wound contraction and higher recovery  rate  than  of  base  cream  (negative  control)  but  lower  than  mupirocin 2%  cream.  In  S.  aureus and  S.  epidermidis  infected  wound  models,  CEE  cream 8%  improved  wound  recovery  to  72.7%  and  86.1%  from  original  rates  of  23.5% and 34.7% (base cream application). Catechin and procyanidis are suggested playing roles in  alleviation of wound inflammation and stimulation of extracellular matrix accumulation,  thus  accelerate  the  wound  healing  process.  This  study  proposes utilization  of  cocoa  bean  as  source  of  active  ingredient  for  skin  care  products.

Article Details

Section
Articles
Author Biography

Ariza Budi Tunjung-Sari, Indonesian Coffee and Cocoa Research Institute

Post Harvest Laboratory

References

Al-Habib, A., Al-Saleh, E., Safer, A.-M., & Afzal, M. (2010). Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). The Journal of Toxicological Sciences, 35(3), 357-364.

Ali, N. H., Faizi, S., & Kazmi, S. U. (2011). Antibacterial activity in spices and local medicinal plants against clinical isolates of Karachi, Pakistan. Pharmaceutical Biology, 49(8), 833-839.

Bandele, O. J., Clawson, S. J., & Osheroff, N. (2008). Dietary polyphenols as topoisomerase II poisons: B ring and C ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement. Chemical research in toxicology, 21(6), 1253-1260.

Bao, P., Kodra, A., Tomic-Canic, M., Golinko, M. S., Ehrlich, H. P., & Brem, H. (2009). The role of vascular endothelial growth factor in wound healing. Journal of Surgical Research, 153(2), 347-358.
Bell, S. M., Pham, J. N., & Nguyen, T. T. (2011). Antibiotic susceptibility testing by the CDS method: a manual for medical and veterinary laboratories 2011 (pp. 97).

Bernal, P., Lemaire, S., Pinho, M. G., Mobashery, S., Hinds, J., & Taylor, P. W. (2010). Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2A-mediated β-lactam resistance by delocalizing PBP2. Journal of Biological Chemistry, 285(31), 24055-24065.

Coutinho, H. D., Costa, J. G., Lima, E. O., Falcão-Silva, V. S., & Siqueira, J. P. (2009). Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin–resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complementary and Alternative Medicine, 9(1), 13.

Crozier, S. J., Preston, A. G., Hurst, J. W., Payne, M. J., Mann, J., Hainly, L., & Miller, D. L. (2011). Cacao seeds are a “Super Fruit": A comparative analysis of various fruit powders and products. Chemistry Central Journal, 5(5), 1-6.

Demidova-Rice, T. N., Hamblin, M. R., & Herman, I. M. (2012). Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Advances in Skin and Wound Care, 25(7), 304-314.

Dillinger, T. L., Barriga, P., Escárcega, S., Jimenez, M., Lowe, D. S., & Grivetti, L. E. (2000). Food of the gods: cure for humanity? a cultural history of the medicinal and ritual use of chocolate. Journal of Nutrition, 130(8), 2057-2072.

Dryden, M. S. (2009). Skin and soft tissue infection: microbiology and epidemiology. International Journal of Antimicrobial Agents, 34(1), 2-7.

García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M. A., & Martínez, J. A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research, 58(9), 537-552.

Gasser, P., Lati, E., Peno‐Mazzarino, L., Bouzoud, D., Allegaert, L., & Bernaert, H. (2008). Cocoa polyphenols and their influence on parameters involved in ex vivo skin restructuring. International Journal of Cosmetic Science, 30(5), 339-345.

Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95-108.

Hay, R. J., Johns, N. E., Williams, H. C., Bolliger, I. W., Delavalle, B., Margolis, D. J., . . . Naghavi, M. (2013). The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. Journal of Investigative Dermatology. http://dx.doi.org/10.1038/jid.2013.446 doi:10.1038/jid.2013.446

He, L., Mu, C., Shi, J., Zhang, Q., Shi, B., & Lin, W. (2011). Modification of collagen with a natural cross-linker, procyanidin. International Journal of Biological Macromolecules, 48(2), 354-359.

Johnson, B. J., Delehanty, J. B., Lin, B., & Ligler, F. S. (2008). Immobilized proanthocyanidins for the capture of bacterial lipopolysaccharides. Analytical Chemistry, 80(6), 2113-2117.

Kapoor, M., Howard, R., Hall, I., & Appleton, I. (2004). Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats. The American Journal of Pathology, 165(1), 299-307.

Lee, K. W., Kim, Y. J., Lee, H. J., & Lee, C. Y. (2003). Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. Journal of Agricultural and Food Chemistry, 51(25), 7292-7295.

Li, K., Diao, Y., Zhang, H., Wang, S., Zhang, Z., Yu, B., . . . Yang, H. (2011). Tannin extracts from immature fruits of Terminalia chebula Fructus Retz. promote cutaneous wound healing in rats. BMC Complementary and Alternative Medicine, 11(1), 86.

Lippi, D. (2009). Chocolate and medicine: Dangerous liaisons? Nutrition, 25(11), 1100-1103.

Luciano-Montalvo, C., Boulogne, I., & Gavillán-Suárez, J. (2013). A screening for antimicrobial activities of Caribbean herbal remedies. BMC Complementary and Alternative Medicine, 13(1), 126.

Madhan, B., Krishnamoorthy, G., Rao, J. R., & Nair, B. U. (2007). Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. International Journal of Biological Macromolecules, 41(1), 16-22.

Matsumoto, Y., Kaihatsu, K., Nishino, K., Ogawa, M., Kato, N., & Yamaguchi, A. (2012). Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Frontiers in Microbiology, 3(53), 1-10.

Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of alkalization on the antioxidant and flavanol content of commercial cocoa powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533.

Misnawi, Selamat, J., Bakar, J., & Saari, N. (2002). Oxidation of polyphenols in unfermented and partly fermented cocoa beans by cocoa polyphenol oxidase and tyrosinase. Journal of the Science of Food and Agriculture, 82(5), 559-566.
Muller, M., Trocme, C., Lardy, B., Morel, F., Halimi, S., & Benhamou, P. (2008). Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP‐1 to TIMP‐1 is a predictor of wound healing. Diabetic Medicine, 25(4), 419-426.

Mwaura, B., Mahendran, B., Hynes, N., Defreitas, D., Avalos, G., Adegbola, T., . . . Sultan, S. (2006). The impact of differential expression of extracellular matrix metalloproteinase inducer, matrix metalloproteinase-2, tissue inhibitor of matrix metalloproteinase-2 and PDGF-AA on the chronicity of venous leg ulcers. European Journal of Vascular and Endovascular Surgery, 31(3), 306-310.

Naveed, R., Hussain, I., Tawab, A., Tariq, M., Rahman, M., Hameed, S., . . . Iqbal, M. (2013). Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC Complementary and Alternative Medicine, 13(1), 265.

Neukam, K., Stahl, W., Tronnier, H., Sies, H., & Heinrich, U. (2007). Consumption of flavanol-rich cocoa acutely increases microcirculation in human skin. European Journal of Nutrition, 46(1), 53-56.

Oh, J., Conlan, S., Polley, E. C., Segre, J. A., & Kong, H. H. (2012). Shifts in human skin and nares microbiota of healthy children and adults. Genome Medicine, 4(10), 77.
Otto, M. (2009). Staphylococcus epidermidis—the'accidental'pathogen. Nature Reviews Microbiology, 7(8), 555-567.
Otto, M. (2012). Molecular basis of Staphylococcus epidermidis infections. Paper presented at the Seminars in immunopathology.

Puupponen-Pimiä, R., Nohynek, L., Alakomi, H.-L., & Oksman-Caldentey, K.-M. (2005). Bioactive berry compounds: novel tools against human pathogens. Applied Microbiology and Biotechnology, 67(1), 8-18.
Radulovic, N., Blagojevic, P., Stojanovic-Radic, Z., & Stojanovic, N. (2013). Antimicrobial plant metabolites: structural diversity and mechanism of action. Current Medicinal Chemistry, 20(7), 932-952.
Schierle, C. F., De la Garza, M., Mustoe, T. A., & Galiano, R. D. (2009). Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair and Regeneration, 17(3), 354-359.

Singh, R., Ray, P., Das, A., & Sharma, M. (2010). Penetration of antibiotics through staphylococcus aureus and staphylococcus epidermidis biofilms. Journal of Antimicrobial Chemotherapy, 65(9), 1955-1958.

Suriyanarayanan, B., Shanmugam, K., & Santhosh, R. S. (2013). Synthetic quercetin inhibits mycobacterial growth possibly by interacting with DNA gyrase. Romanian Biotechnological Letters, 18(5), 8587-8593.
Tang, H., Covington, A. D., & Hancock, R. (2003). Structure–activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers, 70(3), 403-413.
Zhai, W.-y., Jia, C.-p., Zhao, H., & Xu, Y.-s. (2011). Procyanidins inhibit tumor angiogenesis by crosslinking extracellular matrix. Chinese Journal of Cancer Research, 23(2), 99-106.

Zhang, Q., Kelly, A. P., Wang, L., French, S. W., Tang, X., Duong, H. S., . . . Le, A. D. (2006). Green tea extract and (−)-epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3K/Akt signaling pathways. Journal of Investigative Dermatology, 126(12), 2607-2613.